Selected Publications: 

      (# Equal contribution, * corresponding author)

Nature Energy 2022, 7, 170-176
Nature Energy 2020, 5, 478-486
Nature Commun. 2021, 12, 3387
Nature Commun. 2019, 10, 5186
ACS Nano 2017, 11, 4571-4581
Nature Commun. 2015, 6, 7594
Nature Catalysis 2022, 5, 564-570.
Nature Commun. 2022, 13, 819
J. Am. Chem. Soc. 2020, 142, 3525-3531
Adv. Mater. 2018,1801956 
Nano Lett. 2016, 16, 1467-1471
J. Am. Chem. Soc. 2015, 137, 15036-15042

  Full List of Peer-Reviewed Articles

    (# equal contribution, * corresponding author) 



66. Wu, Q.; Du, R.; Wang, P.; Waterhouse, G. I.N.*; Li, J.; Qiu, Y.; Yan, K.; Zhao, Y.; Zhao, W.-W.; Tsai, H.-J.; Chen, M.-C.; Hung, S.-F.*; Wang, X.*; Chen, G.* Nanograin boundary-abundant Cu2O-Cu nanocubes with high C2+ selectivity and good stability during electrochemical CO2 reduction at a current density of 500 mA cm−2. ACS Nano 2023, 17, 12884-12894.

    65. Guo, W.#; Zhang, S.#; Zhang, J.; Wu, H.;Ma, Y.; Song, Y.; Cheng, L.; Chang, L.; Li, G.; Liu, Y.; Wei, G.; Gan, L.; Zhu, M.*; Xi, S.*; Wang, X.; Yakobson, B. I.*; Tang, B. Z.*; Ye, R*. Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field. Nature Commun. 2023, 14, 7383.

64. Jin, J.#; Wicks, J.#; Min, Q.#; Li, J.#; Hu, Y.; Ma, J.; Wang, Y.; Jiang, Z.; Xu, Y.; Lu, R.; Si, G.; Papangelakis, P.; Shakouri, M.; Xiao, Q.; Ou, P.; Wang, X.; Chen, Z.; Zhang, W.; Yu, K.; Song, J.; Jiang, X.; Qiu, P.; Lou, Y.; Wu, D.; Mao, Y.; Ozden, A.; Wang, C.; Xia, B. Y.; Hu, X.; Dravid, V. P.; Yiu, Y.-M.; Sham, T.-K.; Wang, Z.; Sinton, D.; Mai, L.*; Sargent E. H.*; Pang, Y.* Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction. Nature 2023, 617, 724-729.

63.  Du, R.#; Wu, Q.#; Zhang, S.#; Wang, P.; Li, Z.; Qiu, Y.; Yan, K.; Waterhouse, G. I. N.; Wang, P.; Zhao, Y.*; Zhao, W.-W.*; Wang, X.*; Chen, G.* Cu-C(O) interfaces deliver remarkable selectivity and stability for CO2 reduction to C2+ products at industrial current density of 500 mA cm−2. Small 2023, 19, 2301289.

     62.  Fan, M.#; Miao, R. K.#; Ou, P.#; Xu, Y.#; Lin, Z.-Y.; Lee, T.-J.; Hung, S.-F.; Xie, K.; Huang, J. E.; Ni, W.; Li, J.; Zhao, Y.; Ozden, A.; O’brien, C. P.; Chen, Y.; Xiao, Y. C.; Liu, S.; Wicks, J.; Wang, X.; Abed, J.; Shirzadi, E.; Sargent E. H.*; Sinton, D.* Single-site decorated copper enables energy and carbon-efficient CO2 methanation in acidic conditions. Nature Commun. 2023, 14, 3314.

   Prior to joining City University of Hong Kong

61. Wang, X.#; Ou, P.#; Ozden, A.; Hung, S.-F.; Tam J.; Gabardo C. M.; Howe, J. Y.; Sisler J.; Bertens, K.; de Arquer, F. P. G.; Miao, R. K.; O’Brien, C. P.; Wang, Z.; Abed, J.; Rasouli, A. S.; Sun, M.; Ip, A. H.; Sinton, D.; Sargent, E. H.* Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nature Energy 2022, 7, 170-176. 

60. Xie, Y.#; Ou, P.#; Wang, X.#; Xu, Z.; Li, Y. C.; Wang, Z.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N.; Wang, Y.; Chen, T.; Lo, B. T. W.; Sinton, D.; Yu, J. C.; Wang Y.*; Sargent, E. H.* High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nature Catalysis 2022, 5, 564-570. 

59. Hung, S.-F.#; Xu, A.#; Wang, X.#; Li, F.#; Hsu, S.-H.; Li, Y.; Wicks, J.; Cervantes, E. G.; Rasouli, A. S.; Li, Y. C.; Luo, M.; Nam, D.-H.; Wang, N.; Peng, T.; Yan, Y.; Lee, G.; Sargent, E. H.* A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nature Commun. 2022, 13, 819.

58. Wang, X.; Sargent, E. H.* Section 23 "How can we systematically discover new materials for CO2R?" in 2022 Roadmap on Low Temperature Electrochemical CO2 Reduction. Journal of Physics: Energy 2022, 4, 042003.

57. Xu, A.#; Hung, S.-F.#; Cao, A.#; Wang, Z.#; Karmodak, N.; Huang, J. E.; Yan, Y.; Rasouli, A. S.; Ozden, A.; Wu, F.-Y.; Lin, Z.-Y.; Tsai, H.-J.; Lee, T.-J.; Li, F.; Luo, M.; Wang, Y.; Wang, X.; Abed, J.; Wang, Z.; Nam, D.-H.; Li, Y. C.; Ip, A. H.; Sinton, D.; Dong, C.*; Sargent, E. H.* Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nature Catal. 2022, 5, 1081-1088.

56. Nam, D.-H.#; Shekhah, O.#; Ozden, A.#; McCallum, C.; Li, F.; Wang, X.; Lum, Y.; Lee, T.; Li, J.; Wicks, J.; Johnston, A.; Sinton, D.*; Eddaoudi, M.*; Sargent, E. H.* High-rate and selective CO2 electrolysis to ethylene via metal-organic-framework-augmented CO2 availability. Adv. Mater. 2022, 2207088. 

55. Rasouli, A. S.; Wang, X.; Wicks, J.; Dinh, C.-T.; Abed, J.; Wu, F.-Y.; Hung, S.-F.; Bertens, K.; Huang, J. E.; Sargent, E. H.*  Ga doping disrupts C-C coupling and promotes methane electroproduction on CuAl catalysts. Chem Catal. 2022, 2, 908-916.

54. Ozden, A. #; de Arquer, F. P. G. #; Huang, J. E. #; Wicks, J. #; Sisler, J.; Miao, R. K.; O’Brien, C. P.; Lee, G.; Wang, X.; Ip, H. A.; Sargent, E. H.*; Sinton, D.* Carbon-efficient carbon dioxide electrolysers. Nature Sustainability 2022, doi: 10.1038/s41893-022-00879-8

53. Robb, A.; Ozden, A.; Miao, R. K.; O’Brien, C. P.; Xu, Y.; Gabardo, C. M.; Wang, X.; Zhao, N.; de Arquer, F. P. G.; Sargent, E. H.*; Sinton, D.* Concentrated ethanol electrosynthesis from CO2 via a porous hydrophobic adlayer. ACS Appl. Mater. Interfaces 2022, 14, 4155-4162.

52. Huang, J. E.#; Li, F.#; Ozden, A.#; Rasouli, A. S.; De Arquer, F. P. G.; Liu, S.; Zhang, S.; Luo, M.; Wang, X.; Lum, Y.; Xu, Y.; Bertens, K.; Miao, R. K.; Dinh, C.-T.; Sinton, D.*; Sargent, E. H.* CO2 electrolysis to multicarbon products in strong acid. Science 2021, 372, 1074-1078.

51. Liu, Y.; Khusnutdinova, A.; Chen, J.; Crisante, D.; Batyrova, K.; Raj, K.; Feigis, M.; Shirzadi, E.; Wang, X.; Dorakhan, R.; Wang, X.; Stogios, P. J.; Yakunin, A. F.; Sargent, E. H.; Mahadevan, R.* Systems engineering of Escherichia coli for n-butane production. Metabolic Engineering 2022, 74, 98-107.

50. Wang, X.#; Ou, P.#; Wicks, J.#; Xie, Y.#; Wang, Y.#; Li, J.; Tam J.; Ren, D.; Howe, J. Y.; Wang, Z.; Ozden, A.; Finfrock, Y. Z. 6,7, Xu, Y.; Li, Y.; Rasouli, A. S.; Bertens K.; Ip, A. H.; Graetzel, M.; Sinton D.; Sargent, E. H.* Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. Nature Commun. 2021, 12, 3387.

49. Miao, R. K.#; Xu, Y.#; Ozden, A.; Robb, A.; O’Brien, C. P.; Gabardo, C. M.; Lee, G.; Edwards, J. P.; Huang, J. E.; Fan, M.; Wang, X.; Liu, S.; Yan, Y.; Sargent, E. H.*; Sinton, D.* Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. Joule 2021, 5, 2742-2753.

48. Tao, P.#; Zhuang, T.#; Yan, Y.#; Qian, J.#; Dick, G. R.; de Bueren, J. B.; Hung, S.-F.; Zhang, Y.; Wang, Z.; Wicks, J.; de Arquer, F. P. G.; Abed, J.; Wang, N.; Rasouli, A. R.; Lee, G.; Wang, M.; He, D.; Wang, Z.; Liang, Z.; Song, L.; Wang, X.; Chen, B.; Ozden, A.; Lum, Y.; Leow, W. R.; Luo, M.; Meira, D. M.; Ip, H. A.; Luterbacher, J. S.*; Zhao, W.*; Sargent, E. H.* Ternary alloys enable efficient production of methoxylated chemicals via selective electrocatalytic hydrogenation of lignin monomers. J. Am. Chem. Soc. 2021, 143, 17226-17235.

47. Gao, W.#; Elnabawy, A. O.#; Hood, Z. D.; Shi, Y.; Wang, X.; Roling, L. T.; Pan, X.*; Mavrikakis, M.*; Xia, Y.*; Chi, M.* Atomistic insights into the nucleation and growth of platinum on palladium nanocrystals. Nature Commun. 2021, 12, 3215.

46. Xu, Y.#; Li, F.#; Xu, A.; Edwards, J. P.; Hung, S.-F.; Gabardo, C. M.; O’Brien, C. P.; Liu, S.; Wang, X.; Li, Y.; Wicks, J.; Miao, R. K.; Liu, Y.; Li, J.; Huang, J. E.; Abed, J.; Wang, Y.; Sargent, E. H.*; Sinton, D.* Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nature Commun. 2021, 12, 3564.

45. Li, J.#; Ozden, A.#; Wan, M.#; Hu, Y.; Li, F.; Wang, Y.; Zamani, R. R.; Ren, D.; Wang, Z.; Xu, Y.; Nam, D.-H.; Wicks, J.; Chen, B.; Wang, X.; Luo, M.; Graetzel, M.; Che, F.*; Sargent, E. H.*; Sinton. D.* Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nature Commun. 2021, 12, 2808.

44. Grigioni, I.#; Sagar, L. K.#; Li, Y. C.; Lee, G.; Yan, Y.; Bertens, K.; Miao, R. K.; Wang, X.; Abed, J.; Won, D. H.; de Arquer, F. P. G.; Ip, A. H.; Sinton, D.; Sargent, E. H.* CO2 electroreduction to formate at a partial current density of 930 mA cm–2 with InP colloidal quantum dot derived catalysts. ACS Energy Lett. 2021, 6, 9, 79-84.

43. Wang, X.#; Wang, Z.#; de Arquer, F. P. G.; Dinh, C. -T.; Ozden, A.; Li, Y. C.; Nam, D. -H.; Li, J.; Liu, Y. -S.; Wicks, J.; Chen, Z.; Chi, M.; Chen, B.; Wang, Y.; Tam, J.; Howe, J.; Proppe, A.; Todorovic, P.; Li, F.; Zhuang, T.; Gabardo, C. M.; Krimani, A.; McCallum, C.; Lum, Y.; Luo, M.; Min, Y.; Xu, A.; O’Brien, C. P.; Stephen, B.; Sun, B.; Ip, A. H.; Richter, L.; Kelley, S.; Sinton, D.; Sargent, E. H.* Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nature Energy 2020, 5, 478-486.

42. Wang, X.#; Xu, A.#; Li, F.; Hung, S.-F.; Nam, D.-H.; Gabardo, C. M.; Wang, Z.; Xu, Y.; Ozden, A.; Rasouli, A. S.; Ip, A. H.; Sinton, D.; Sargent, E. H.* Efficient methane electrosynthesis enabled by tuning local CO2 availability. J. Am. Chem. Soc. 2020, 142, 3525-3531.

41. Rasouli, A. S.#; Wang, X.#; Wicks, J.; Lee, G.; Peng, T.; Li, F.; McCallum, C.; Dinh, C.-T.; Ip, A. H.; Sinton, D.; Sargent, E. H.* CO2 electroreduction to methane at production rates exceeding 100 mA/cm2. ACS Sustainable Chem. Eng. 2020, 8, 14668-14673.

40. Wang, X.*; Zhao, Z.; Sun, P.; Li, F.* One-step synthesis of supported high-index faceted platinum–cobalt nanocatalysts for an enhanced oxygen reduction reaction. ACS Appl. Energy Mater. 2020, 3, 5077-5082.

39. Ozden, A.#; Li, F.#; de Arquer, F. P. G.; Rosas-Hernández, A.; Thevenon, A.; Wang, Y.; Hung, S.-F.; Wang, X.; Chen, B.; Li, J.; Wicks, J.; Luo, M.; Wang, Z.; Agapie, T.*; Peters, J. C.*; Sargent, E. H.*; Sinton, D.* High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer. ACS Energy Lett. 2020, 5, 2811-2818.

38. Arquer, F. P. G.#; Dinh, C. -T.#; Ozden, A.#; Wicks, J.#; McCallum, C.; Kirmani, A. R.; Nam, D.-H.; Gabardo, C. M.; Seifitokaldani, A.; Wang, X.; Li, Y. C.; Li, F.; Edwards, J.; Richter, L. J.; Sinton, D.*; Sargent, E. H.* CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 2020, 367,661-666.

37. Li, F.#; Li, Y. C.#; Wang Z.#; Li, J.; Nam, D.-H.; Lum, Y.; Luo, M.; Wang, X.; Ozden, A.; Hung, S.-F.; Chen, B.; Wang, Y.; Wicks, J.; Xu, Y.; Li, Y.; Gabardo C. M.; Dinh, C. -T.; Wang, Y.; Zhuang, T.-T.; Sinton, D.; Sargent, E. H.* Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nature Catal. 2020, 3, 75-82.

36. Li, F.#; Thevenon, A.#; Rosas-Hernández, A.#; Wang Z.#; Li, Y.#; Gabardo C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.; Edwards, J. P.; Xu, Y.; McCallum, C.; Tao L.; Liang, Z.-Q.; Luo, M.; Wang, X.; Li, H.; O’Brien, C. P.; Tan, C.-S.; Nam, D.-H.; Quintero-Bermudez, R.; Zhuang T.-T.; Li, Y. C.; Han, Z.; Britt, R. D.; Sinton, D.; Agapie, T.*; Peters, J. C.*; Sargent, E. H.* Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577, 509-513.

35. Li, Y.#; Xu, A.#; Lum, Y.#; Wang, X.; Hung, S.-F.; Chen, B.; Wang, Z.; Xu, Y.; Li, F.; Abed, J.; Huang, J. E.; Rasouli, A. S.; Wicks, J.; Sagar, L. K.; Peng, T.; Ip, A. H.; Sinton, D.; Jiang, H.; Li, C.*; Sargent, E. H.* Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. Nature Commun. 2020, 11, 6190.

34. Wang, X.#; Wang, Z.#; Zhuang, T.-T.; Dinh, C.-T.; Li, J.; Nam, D.-H.; Li, F.; Huang, C.-W.; Tan, C.-S.; Chen, Z.; Chi, M.; Gabardo, C. M.; Seifitokaldani, A.; Todorović, P.; Proppe, A.; Pang, Y.; Kirmani, A. R.; Wang, Y.; Ip, A. H.; Richter, L. J.; Scheffel, B.; Xu, A.; Lo, S.-C.; Kelley, S. O.; Sinton, D.; Sargent, E. H.* Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nature Commun. 2019, 10, 5186. (Top 50 Chemistry and Materials Sciences Articles in 2019)

33. Luo, M.#; Wang, Z.#; Li, Y. C.#; Li, J.; Li, F.; Lum, Y.; Nam, D.-H.; Chen, B.; Wicks, J.; Xu, A.; Zhuang, T.-T.; Leow, W, R.; Wang, X.; Dinh, C.-T.; Wang, Y.; Wang, Y.; Sinton, D.; Sargent, E. H.* Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nature Commun. 2019, 10, 5814.

32. Pang, Y.#; Li, J.#; Wang, Z.; Tan, C.; Hsieh, P.; Zhuang, T.; Liang, Z.; Zou, C.; Wang, X.; De Luna, P.; Edwards, J. P.; Xu, Y.; Li, F.; Dinh, C.; Zhong, M.; Lou, Y.; Wu, D.; Chen, L.; Sargent, E. H.*; Sinton, D.* Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nature Catal. 2019, 2, 251-258.

31. Zhuang, T.-T.#; Nam, D.-H.#; Wang, Z.; Li, H.-H.; Gabardo C. M.; Li, Y.; Liang, Z.-Q.; Li, J.; Liu, X.-J.; Chen, B.; Leow, W. R.; Wang, X.; Li, F.; Lum, Y.; Wicks, J.; O’Brien, C. P.; Peng, T.; Ip, A. H.; Sham, T.-K.; Yu, S.-H.; Sinton, D.; Sargent, E. H.* Dopant-tuned stabilization of intermediates promotes electrosynthesis of valuable C3 products. Nature Commun. 2019, 10, 4807.

30. Zhao, M.#; Wang, X.#; Yang, X.#; Gilroy, K. D.; Qin, D.; Xia, Y.* Hollow metal nanocrystals with ultrathin, porous walls and well-controlled surface structures. Adv. Mater. 2018, 1801956. 

29. Zhao, Z., Wang, X.*; Si, J.; Yue, C.; Xia, C.; Li, F.* Truncated concave octahedral Cu2O nanocrystals with {hkk} high-index facets for enhanced activity and stability in heterogeneous catalytic azide-alkyne cycloaddition. Green Chem. 2018, 20, 832-837.

28. Gao, W.*; Hou, Y.; Hood, Z. D.; Wang, X.; More, K.; Wu, R.; Xia, Y.; Pan, X.*; Chi, M.* Direct in situ observation and analysis of the formation of palladium nanocrystals with high-index facets. Nano Lett. 2018, 18, 7004−7013.

27. Xia, Y.*; Zhao, M.; Wang, X.; Huo, D. Toward affordable and sustainable use of precious metals in catalysis and nanomedicine. MRS Bull. 2018, 43, 860-869.

26. Vara, M.; Wang, X.; Howe, J.; Chi, M.; Xia, Y*. Understanding the stability of Pt-based nanocages under thermal stress using in situ electron microscopy. ChemNanoMat 2018, 4, 112-117.

25. Wang, X.*#; Chen, J.#; Zeng, J.; Wang, Q.; Li, Z.; Qin, R.; Wu, C.; Xie, Z.*; Zheng, L. The synergy between atomically dispersed Pd and cerium oxide for enhanced catalytic properties. Nanoscale 2017, 9, 6643-6648.

24. Vara, M.#; Roling, L. T.#; Wang, X.#; Elnabawy, A. O.; Hood, Z. D.; Chi. M.; Mavrikakis. M.; Xia, Y.* Understanding the thermal stability of palladium–platinum core–shell nanocrystals by in situ transmission electron microscopy and density functional theory. ACS Nano 2017, 11, 4571-4581.

23. Wang, X.; Figueroa-Cosme, L.; Yang, X.; Luo, M.; Liu, J.; Xie, Z.; Xia, Y.* Pt-based icosahedral nanocages: using a combination of {111} facets, twin defects, and ultrathin walls to greatly enhance their activity toward oxygen reduction. Nano Lett. 2016, 16, 1467-1471.

22. Wang, X.; Luo, M.; Huang, H.; Chi, M.; Howe, J.; Xie, Z.; Xia, Y.* Facile synthesis of Pt–Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates. ChemNanoMat 2016, 2, 1086-1091. (It was selected by the editors as a VIP article)

21. Wang, X.; Ruditskiy, A.; Xia, Y.* Rational design and synthesis of noble-metal nanoframes for catalytic and photonic applications. Natl. Sci. Rev. 2016, 3, 520-533. 

20. Wang, H.; Niu, G.; Zhou, M.; Wang, X.; Park, J.; Bao, S.; Chi, M.; Cai, Z.; Xia, Y.* Scalable synthesis of palladium icosahedra in plug reactors for the production of oxygen reduction reaction catalysts. ChemCatChem 2016, 8, 1658-1664.

19. Bao, S.; Yang, X.; Luo, M.; Zhou, S.; Wang, X.; Xie, Z.; Xia, Y.* Shape-controlled synthesis of CO-free Pd nanocrystals with the use of formic acid as a reducing agent. Chem. Commun. 2016, 52, 12594-12597.

18. Zhang, L.*; Chen, Q.; Wang, X.; Jiang, Z.* Nucleation-mediated synthesis and enhanced catalytic properties of Au–Pd bimetallic tripods and bipyramids with twinned structures and high-energy facets. Nanoscale 2016, 8, 2819-2825.

17. Wang, X.; Vara, M.; Luo, M.; Huang, H.; Ruditskiy, A.; Park, J.; Bao, S.; Liu, J.; Howe, J.; Chi, M.; Xie Z.; Xia, Y.* Pd@Pt core-shell concave decahedra: A class of catalysts for the oxygen reduction reaction with enhanced activity and durability. J. Am. Chem. Soc. 2015, 137, 15036-15042.

16. Wang, X.#; Choi, S.-I.#; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M.; Liu, J.; Xie, Z.; Herron, J. A.; Mavrikakis, M.*; Xia, Y.* Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability toward oxygen reduction. Nature Commun. 2015, 6, 7594.

15. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S.-I.; Park, J.; Lu, N.; Herron, J. A.; Xie, Z.; Mavrikakis, M.; Xia, Y.* Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412-416.

14. Wang, Q.; Kuang, Q.; Wang, K.; Wang, X.; Xie, Z.* A surfactant free synthesis and formation mechanism of hollow Cu2O nanocubes using Clˉ ions as the morphology regulator. RSC Adv. 2015, 5, 61421-61425.

13. Xiao, J.*; Wan, L.; Wang, X.; Kuang, Q.; Dong, S.; Xiao, F.; Wang, S.* Mesoporous Mn3O4–CoO core–shell spheres wrapped by carbon nanotubes: a high performance catalyst for the oxygen reduction reaction and CO oxidation. J. Mater. Chem. A 2014, 2, 3794-3800.

12. Wang, X.; Liu, C.; Zheng, B.; Jiang, Y.; Zhang, L.; Xie, Z.*; Zheng, L. Controlled synthesis of concave Cu2O microcrystals enclosed by {hhl} high-index facets and enhanced catalytic activity. J. Mater. Chem. A 2013, 1, 282-287.

11. Wang, X.; Jiang, Z.; Jiang, Y.; Lin, H.; Kuang, Q.; Xie, Z.* Shape-controlled synthesis of metal oxides micro/nanocrystals enclosed by crystal facets of high surface energy. Sci. China Chem. 2013, 43, 1630-1639. 

10. Kuang. Q.; Wang, X.; Jiang, Z.; Xie, Z.*; Zheng, L. High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications. Acc. Chem. Res. 2013, 47, 308-318. 

9. Zheng, B.; Wang, X.; Liu, C.; Tan, K.*; Xie, Z.*; Zheng, L. High-efficiently visible light-responsive photocatalysts: Ag3PO4 tetrahedral microcrystals with exposed {111} facets of high surface energy. J. Mater. Chem. A 2013, 1, 12635-12640.

8. Hou, C.; Zhu, J.; Liu, C.; Wang, X.; Kuang, Q.*; Zheng, L. Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in CO oxidation. CrystEngComm 2013, 15, 6127-6130.

7. Liu, C.; Han, X.; Xie, S.; Kuang, Q.*; Wang, X.; Jin, M.; Xie, Z.; Zheng, L. Enhancing the photocatalytic activity of anatase TiO2 by improving the specific facet-induced spontaneous separation of photogenerated electrons and holes. Chem. Asian J. 2013, 8, 282-289.

6. Wang, X.; Han, X.; Xie, S.; Kuang, Q.*; Jiang, Y.; Zhang, S.; Mu, X.; Chen, G.; Xie, Z.*; Zheng, L. Controlled synthesis and enhanced catalytic and gas-sensing properties of tin dioxide nanoparticles with exposed high-energy facets. Chem. Eur. J. 2012, 18, 2283-2289.

5. Wang, X.; Jiang, Z.*; Zheng, B.; Xie, Z.*; Zheng, L. Synthesis and shape-dependent catalytic properties of CeO2 nanocubes and truncated octahedra. CrystEngComm 2012, 14, 7579-7582.

4. Han. X.; Wang, X.; Xie, S.; Kuang, Q.*; Ouyang, J.; Xie, Z.*; Zheng, L. Carbonate ions-assisted syntheses of anatase TiO2 nanoparticles exposed with high energy (001) facets. RSC Adv. 2012, 2, 3251-3253.

3. Han. X.; Zheng, B.; Ouyang, J.; Wang, X.; Kuang, Q.*; Jiang, Y.; Xie, Z.*; Zheng, L. Control of anatase TiO2 nanocrystals with a series of high-energy crystal facets via a fuorine-free strategy. Chem. Asian J. 2012, 7, 2538-2542.

2. Xie, S.; Zheng, B.; Kuang, Q.*; Wang, X.; Xie, Z.*; Zheng, L. Synthesis of layered protonated titanate hierarchical microspheres with extremely large surface area for selective adsorption of organic dyes. CrystEngComm 2012, 14, 7715-7720.

1. Zhang, J.; Zhang, L.; Jia, Y.; Chen, G.; Wang, X.; Kuang, Q.*; Xie, Z.*; Zheng, L. Synthesis of spatially uniform metal alloys nanocrystals via a diffusion controlled growth strategy: the case of Au–Pd alloy trisoctahedral nanocrystals with tunable composition. Nano Res. 2012, 5, 618-629.